skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaleoglu, Fatih"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a new notion called Q-secure pseudorandom isometries (PRI). A pseudorandom isometry is an efficient quantum circuit that maps an n-qubit state to an (n+m)-qubit state in an isometric manner. In terms of security, we require that the output of a q-fold PRI on \rho, for \rho \in Q, for any polynomial q, should be computationally indistinguishable from the output of a q-fold Haar isometry on \rho. By fine-tuning Q, we recover many existing notions of pseudorandomness. We present a construction of PRIs and assuming post-quantum one-way functions, we prove the security of Q-secure pseudorandom isometries (PRI) for different interesting settings of Q. We also demonstrate many cryptographic applications of PRIs, including, length extension theorems for quantum pseudorandomness notions, message authentication schemes for quantum states, multi-copy secure public and private encryption schemes, and succinct quantum commitments. 
    more » « less